Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: A case study of Lutynia (SW Poland) peridotite xenoliths

Magdalena Matusiak-Małecka,b,⁎, Jacek Puziewicz a, Theodoros Ntafos b, Michel Grégoirec, Hilary Downes d

a University of Wrocław, Institute of Geological Sciences, pl. M. Borna 9, 50-205 Wrocław, Poland
b University of Vienna, Department of Lithospheric Research, Althanstraße 14, 1090 Wien, Austria
c CNRS-UMR 5562, University of Toulouse, Observatoire Midi Pyrénées 14, av. E. Belin, 31-400 Toulouse, France
d Department of Earth and Planetary Sciences, Birkbeck University of London, Malet Street, London WC1E 7HX, UK

A R T I C L E I N F O

Article history:
Received 4 July 2009
Accepted 10 February 2010
Available online 19 February 2010

Keywords:
Lherzolite–harzburgite xenoliths
Upper mantle
Chromatographic metasomatism
SW Poland
Cenozoic basanite

A B S T R A C T

Spinel lherzolite and spinel harzburgite mantle xenoliths occur in the 4.56 ± 0.2 Ma Lutynia basanite in SW Poland. Only one studied xenolith contains minor pargasitic amphibole. Minerals forming the xenoliths are chemically unzoned. Olivine (Fo [(Mg/(Mg+Fe²⁺)) * 100] 89.8–92.4) contains 0.34–0.45 wt% NiO and <780 ppm Ca; orthopyroxene is Al enstatite (#mg [(Mg/(Mg+Fe²⁺)) * 100] 0.90–0.92, Al 0.06–0.17 a.pfu); clinopyroxene is Al–Cr diopside (#mg 0.91–0.93, Al 0.104–0.197 a.pfu). Exsolved orthopyroxene occurs in the clinopyroxene and vice versa. Al–Mg spinel occurs in symplectites with clinopyroxene. Second generation crystals of olivine (Fo 88.0–91.5, Ca up to 1800 ppm), clinopyroxene and spinel occur in small interstitial patches containing feldspar. Clinopyroxene II is Al-poor (0.018–0.070 a.pfu, #mg 0.921–0.932) when coexisting with alkali feldspar, but Al-rich (0.046–0.261 a.pfu; #mg 0.907–0.925) when found with plagioclase. Four types of REE (rare earth elements) patterns are found in the clinopyroxene: (group A) flat HREE (heavy REE) with LREE (light REE) content increasing smoothly; (group B) flat HREE with an abrupt increase of MREE (medium REE) and LREE; (group C) LREE-enriched, flat HREE with negative inflection at MREE; (group D) smoothly LREE-enriched with no flat HREE pattern. The exception is clinopyroxene from xenolith MM30 which is extremely depleted in LREE. Clinopyroxene I from all the xenoliths (excluding MM30) contains high amounts of Th and U. Clinopyroxene trace element compositions record 8–15% partial melting. Major and trace element compositions of minerals record later cryptic metasomatism induced by a CO₂-bearing alkaline melt. Variable REE patterns for clinopyroxene I from groups A, B and C are due to chromatographic enrichment, with group A peridotites located close to the metasomatic source and group C being the furthest. The pargasite-bearing MM04 was probably the closest to the metasomatic source and thus recorded incipient modal metasomatism. Clinopyroxene–spinel symplectites and ortho-/clinopyroxene exsolutions suggest that the peridotites were transported from the garnet-lherzolite facies into the spinel one where they cooled and equilibrated at 960–1000 °C. The patches formed by the second generation of minerals are the effect of pre-eruption infiltration by the basanitic melt.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Late Cretaceous to Pleistocene basaltic rocks are widespread in Europe (Lustrino and Wilson, 2007). Their origin is associated with collision between the African and Euroasian plates which led to development of a lithospheric rift system in the northern foreland of the Alps and uplift of Variscan basement blocks (Massif Central, Rhenish Massif, Bohemian Massif; Wilson and Downes, 2006). Cenozoic lavas are common in the Bohemian Massif. The Eger Graben is the largest occurrence but numerous smaller ones are located in the NE part of the Massif (Sudetes and the Fore-Sudetic Block in SW Poland and N Czech Republic). More than three hundred outcrops of volcanic rocks, mostly basanites, nephelinites and basalts, are known from SW Poland (Ladenberger et al., 2006). They are concentrated in two large (Lubań–Frydland and Złotoryja–Jawor) and three smaller (Niemcza–Strzelin, Niemodlin and Łądek Zdrój) volcanic fields in the Sudetes and in the Fore-Sudetic Block (Fig. 1a). Blusztań and Hart (1989) and Ladenberger et al. (2006) showed that the lavas are derived from a heterogeneous mantle source including DMM, EM and HIMU components. Volcanic activity in SW Poland occurred in two main episodes: Late Oligocene (33.7–31.3 Ma) and Early Miocene (24.5–21 Ma; Birkenmajer et al., 2004). A third episode, the youngest, is
recorded only in Łądek Zdrój (5.46±0.2–3.83±0.17 Ma; Birkenmajer et al., 2002). Young volcanic activity occurred also in the Czech (i.e. southern) part of the Sudetes (Bruntal area, 3.69±0.56 Ma to 0.8±0.11 Ma; Foltýnová, 2003; Kozákov volcano, 4–6 Ma; Śbrava and Havlíček, 1980).

Mantle xenoliths occur in some of the lavas in SW Poland and were described from Łądek Zdrój (Blusztajn and Shimizu, 1994; Kozłowska-Koch, 1976), Złotoryja–Jawor vicinity (Białowolska, 1980) and Łubań (Bakun-Czubarow and Białowolska, 2003; Puziewicz, 2005). They are mostly anhydrous peridotites. Amphibole-bearing peridotites have been only described at Wolek Hill (Napiersalska and Muszyński, 2006) and Wilcza Góra, where amphibole is associated with phlogopite (Matusiak-Małek; unpublished data). In the present paper we describe mantle xenoliths in Cenozoic volcanic rocks from Łądek Zdrój area located in the Sudetes Mts.

2. Regional geology

Outcrops of Variscan basement can be followed through Western and Central Europe from Portugal and Spain through France and Germany and into to the Czech Republic and Poland. The eastern part of the Variscan orogen in Europe, i.e. the Bohemian Massif, is limited by the Sudetes Mts. in the north-east. Basaltic lavas, carrying mantle xenoliths described in this paper, occur in the Orlica–Śnieżnik dome (Western Sudetes Mts.). The dome consists of supracrustal formations (micaschists with intercalations of marble, quartzite and amphibolite) in synforms and orthogneisses in antiforms. Rocks forming the dome record medium to high grade metamorphism. Ultrahigh pressure (>2.7 GPa) conditions are recorded in eclogitic rocks in the eastern part of the dome (Bröcker and Klemd, 1996). The supracrustal series is assumed to be Neoproterozoic (Mazar et al., 2006). U–Pb and Pb–Pb zircon ages indicate that the magmatic protolith of the orthogneisses intruded 500 Ma ago (Oliver et al., 1993; Turniak et al., 2000; Kröner et al., 2001).

The Tertiary basanites of the Śnieżnik dome belong to the Central European Volcanic Province (CEVP). In this paper we describe mantle xenoliths from Lutynia village (“Śwedzkie Szańce” quarry; Fig. 1b) near Łądek Zdrój. They occur in a basanitic volcanic plug (Wierzchołowski, 1993) dated at 4.56±0.2 Ma (K–Ar age; Birkenmajer et al., 2002). The basanite also carries clinopyroxene megacrysts and xenoliths of the crustal basement (gneisses, granites, quartzites; Kozłowska-Koch, 1976). Other xenolith occurrences in the Łądek Zdrój area comprise: Zalési (Czech Republic; Fediuk and Fediuková, 1985), Lutynia II and Łądek Zdrój (Kozłowska-Koch, 1976); all three outcrops are at present inactive quarries. The Lutynia (Śwedzkie Szańce and Lutynia II), Łądek Zdrój and Zalési are located 3–4 km from each other and probably form a single volcanic structure (Fig. 1a).
3. Analytical methods

Our study is based on major and trace element analyses of minerals in fourteen xenoliths. The modal compositions were established by an image analysis method (Higgins, 2000). The major element composition of minerals was obtained on >120 µm thick polished sections by using EMP Cameca SX-50 (Observatoire Midi Pyrénées, University Toulouse III) and Cameca SX-100 (University of Vienna, Department of Lithospheric Research). Operating conditions in both the used microprobes were identical. The accelerating voltage and beam current were 15 kV and 20 nA, respectively; PAP correction procedure was applied and natural and synthetic phases were used as standards. The counting times were extended to achieve detection limits of 200 ppm for Ca, 320 ppm for Cr and 400 ppm for Ni.

Concentrations of REE and other trace elements in clinopyroxenes were determined in situ on a Cetac LSX-266 laser ablation mode coupled with an Agilent 7500 ICP–MS instrument (Observatoire Midi Pyrénées, University Toulouse III). The NIST 610 and NIST 612 glass standards were used to calibrate relative element sensitivities. Each analysis was normalized using CaO values determined by electron microprobe. A beam diameter of 50–100 µm and a scanning rate of 20 µm/s were used. The theoretical detection limits range from 10–20 ppb for REE, Ba, Th, U, Zr to 2 ppm for Ti. The accuracy on a typical laser analysis is between 1 and 10%. The clinopyroxene trace element data set also includes new analyses of clinopyroxene separates from Lutynia investigated by Blusztajn and Shimizu (1994). They were mounted in epoxy resin and analyzed using a New Wave Research UP213 LASER coupled to an Agilent 7500a quadrupole ICP–MS system at the Research School of Earth Sciences Birkbeck/UCL. A laser diameter of 55 µm and a pulse frequency of 20 Hz were used, with a laser dwell time of 20 s.

Whole-rock analyses of the peridotites were not performed as the size of the xenoliths was too small to separate a sufficient amount of bulk rock without contaminations by host basanite-related veinlets.

The Morimoto (1989) classification scheme is used for pyroxenes, while for spinel we use Haggerty (1991) and Leake et al. (1997) for amphibole. Mineral abbreviations are: Ol (olivine), Cpx (clinopyroxene), Opx (orthopyroxene), Sp (spinel), AF/PI/Fsp (alkali feldspar/plagioclase/feldspar), and Amp (amphibole). Fo stands for forsterite [(Mg/(Mg+Fe))*100], #mg for Mg/(Mg+Fe+Mn), while #cr for Cr/(Cr+Al); cation ratios are given per formula unit (a.pfu). An (anorthite) content is (Ca/(Ca+K+Na))*100 and the Or (orthoclase) content is (K/(Ca + K + Na))*100, which are the cation ratios per formula unit of feldspar. Spinel chemical composition was recalculated for three cations; Fe2+ and Fe3+ contents were calculated by charge balance according to Deer et al. (1993).

Temperatures were calculated using the Opx–Cpx geothermometers of Wells (1977) and Brey and Köhler (1990a) assuming a pressure of 1.5 GPa. Temperatures were calculated for at least 3 (mostly 5 or more) pairs of Opx/Cpx of the same generation.

4. Petrography of xenoliths

The mantle xenoliths are angular to oval and vary in size from 1 to 10 cm, but one sample (MM30) is an elongate 5×20 cm wide apple-green xenolith. Most have protogranular textures (Mercier and Nicolas, 1975) and only two grade into the porphyroclastic type (Wells, 1977; Brey and Köhler, 1990a) assuming a pressure of 1500–2000 bars. Most xenoliths have protogranular textures (Mercier and Nicolas, 1975), whereas Cpx II associated with Af is mostly Cr pyroxene, rarely Cr diopside, which are used to indicate generation of a mineral: I = rock-forming minerals, II = second generation, minerals occurring in patches, and III = exsolution in generation I mineral.

5. Mineral chemical and geochemical composition

5.1. Mineral major element composition

Forsterite content in OI content varies from 89.8 to 92.4% (Fig. 4) and NiO content varies from 0.34 to 0.45 wt.% (Supplementary Table 1). The Ca content ranges from the microprobe detection limit (200 ppm) to 780 ppm. Marginal parts of OI grains in contact with patches are characterized by low NiO content (ca. 0.28 wt.%). Olivine II within the patches is characterized by Fo and NiO contents slightly lower than those in OI (Fo89.0 versus Fo91.7, and 0.18 versus 0.42 wt.%, respectively; Supplementary Table 1). The Ca content is generally higher than in OI and reaches 1800 ppm.

Orthopyroxene I and Opx III have the same composition of Al enstatite or enstatite (in xenoliths MM25 and MM30; Fig. 5a–c). Their #mgs are 0.90–0.92, while the Al content varies from 0.06 to 0.17 a.pfu (Supplementary Table 2).

The composition of Cpx I (Ca 0.842–0.902 a.pfu) from all the xenoliths, except MM30, is Al–Cr diopside, (#mg 0.91–0.93, Al = 0.104–0.197 a.pfu, Cr = 0.016–0.34 a.pfu; Supplementary Tables 3 and 4, Fig. 5a). The Na content varies from 0.035 to 0.074, whereas the Ti content is negligible (<0.005 a.pfu). The relationships between #mg and Al and between Ca and Na, which allow good discrimination between the clinopyroxenes, are shown in Fig. 5d, e. Clinopyroxene I in xenolith MM30 is exceptional for its extremely high #mg (0.943–0.948) and Ca content (0.901–0.924 a.pfu) and low Al content (0.079–0.097 a.pfu; Supplementary Tables 3 and 4, Fig. 5a). Clinopyroxene II has a variable composition depending on the type of feldspar occurring in a given patch (Fig. 5b). Clinopyroxene II coexisting with Pl is Cr–Al (±Ti) augite or rarely Cr–Al–Ti diopside, whereas Cpx II associated with AF is mostly Cr augite, rarely Cr diopside (Fig. 5b, Supplementary Tables 3 and 4). Clinopyroxene III forming lamellae is a Al–Cr diopside/augite; the composition of Cpx III is similar to that of Cpx I from the same xenolith, except for lower...
variable chemical composition, i.e. Cr content of 0.427–0.230 mg in Sp I varies from 0.722 to 0.837, only in xenolith MM15 it is 0.880 Ab 51 (0.716 ranging from plagioclase to alkali feldspar (Supplementary Table 6). Elevated to 0.020 a.pfu (Supplementary Table 5). Spinel III forming MM30 Cr is 0.612 in MM04 and MM30 contains 0.307–0.300 to 0.521 a.pfu (#cr 0.157 lamellae in Cpx I, Opx I and inclusions in Ol I has a variable Cr content from 0.8 to 0.21 a.pfu and 0.15–0.16 a.pfu, respectively).

5.2. Clinopyroxene trace elements

Four main types of rare earth elements (REE) patterns, all characterized by light REE (LREE) enrichment and a shaped An41 with their equivalents in the host basanite (Af An3–50; Supplementary Table 7, Fig. 6). Amphibole in xenolith MM04 is paragasite (Supplementary Table 7). Its #mg is 0.88–0.89, Na content is variable ranging from 0.84 to 0.93 a.pfu, while the Cr and K contents are rather constant (0.20–0.21 a.pfu and 0.15–0.16 a.pfu, respectively).

Table 1

<table>
<thead>
<tr>
<th>Xenolith</th>
<th>Ol [%]</th>
<th>Opx [%]</th>
<th>Cpx [%]</th>
<th>Sp [%]</th>
<th>Cpx trace element group</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM11</td>
<td>75.56</td>
<td>16.01</td>
<td>6.62</td>
<td>1.81</td>
<td>A</td>
</tr>
<tr>
<td>MM21</td>
<td>87.67</td>
<td>8.93</td>
<td>2.37</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>MM22</td>
<td>62.34</td>
<td>33.44</td>
<td>2.73</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>MM39</td>
<td>78.84</td>
<td>16.31</td>
<td>2.01</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>MM30</td>
<td>51.60</td>
<td>38.91</td>
<td>5.00</td>
<td>4.48</td>
<td>B</td>
</tr>
<tr>
<td>MM08</td>
<td>71.97</td>
<td>13.26</td>
<td>12.87</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>MM15</td>
<td>84.40</td>
<td>8.93</td>
<td>2.97</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>MM29</td>
<td>57.64</td>
<td>30.44</td>
<td>8.39</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>MM31</td>
<td>69.71</td>
<td>21.77</td>
<td>6.00</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>MM09</td>
<td>68.05</td>
<td>20.37</td>
<td>10.27</td>
<td>1.32</td>
<td>C</td>
</tr>
<tr>
<td>MM25</td>
<td>75.29</td>
<td>18.37</td>
<td>4.03</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>MM28</td>
<td>80.54</td>
<td>16.07</td>
<td>1.74</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>MM04</td>
<td>80.27</td>
<td>16.12</td>
<td>2.02</td>
<td>1.59</td>
<td>D</td>
</tr>
<tr>
<td>MM30</td>
<td>72.96</td>
<td>19.44</td>
<td>5.35</td>
<td>2.25</td>
<td></td>
</tr>
</tbody>
</table>

(Dy in xenolith MM15) to La. The third group (group C) is characterized by steep La–Pr (Nd–Sm–Dy) negative inflection (LaN/LuN = 3.06–11.92; LaN/SiO2 = 10.05–16.39; Fig. 7e). The REE pattern of the group D shows a constant increase of LREE content (LaN/LuN = 7.30–8.34; Supplementary Table 8; Fig. 7a). The pattern becomes flat from Nd to La (NdN/LaN = 0.88–1.12).

Clinopyroxene I in xenoliths from all the groups contains relatively high amounts of Th and U and low amounts of Ba (Fig. 7a–f). Ta content is always low and varies between groups (TaN groupA = 1.50–3.11, TaN groupC = 0.35–1.62, TaN groupD, xen. MM04 = 5.86). Clinopyroxene MM15 and MM29 which, according to their REE patterns, belong to group B have TaN = 0.10 and TaN = 0.15, respectively. Almost all the xenoliths display a negative Zr and Ti anomaly (group A: LaN/ZrN = 4.47–18.65, LaN/TiN = 15.65–67.52; group B: LaN/ZrN = 82.10–182.44 (302 and 203 in xenoliths MM15 and MM29, respectively)). LaN/TiN = 44.92–142.55 (591.75 in xenolith MM15); group C: LaN/ZrN = 77.26–168.50 LaN/TiN = 10.16–51.16; group D: LaN/ZrN = 1.20–1.57, 1.57–4.63, 1.57–4.63 xen.MM04 = 12473.11. Clinopyroxene I is characterized by decreasing Zr/Ti ratio from group A to C (group A: 35.61–164.56, group B: 5.71–42.96, group C: 1.94–16.95) while in group D the ratio is very high (69.36–88.54), but lower than the highest values from group A. The REE content in Cpx I from xenolith MM30 differs from those of all the groups described above in that its REE abundances are all strongly depleted (LaN/LuN = 0.07 and LuN = 0.37, Fig. 7e–f). Its Hf content is below detection limit.

6. Temperature and pressure estimations

Temperatures obtained on clear rims of Opx I and Cpx I by different methods are in good agreement with each other, which suggests that the minerals were in chemical equilibrium (Supplementary Table 9). Equilibration temperatures of Cpx I and Opx I range from 960 °C to 1000 °C (Supplementary Table 9). Those calculated using Cpx III lamellae in Opx I and Opx III lamellae in Cpx I fall in the same range. Since all the xenoliths are spinel facies peridotites, calculation of their pressure of equilibration is difficult due to the lack of reliable geobarometers. Spinel is stable between 0.9 (Presnail et al., 2002 and references therein) and 1.55 GPa (Klemme and O’Neill, 2000 and references therein) at 1000 °C. The spinel–pyroxene symplectites originated by garnet decomposition due to pressure decrease and cooling. We speculate that the uplift of garnet facies peridotites into the spinel facies is more likely over a short distance and thus the post-

Fig. 2. Phase relationships and texture of xenoliths from Lutynia. (a) Protogranular texture (xenolith MM09) sensu Mercier and Nicolas (1975) occurring in most xenoliths. Optical image, crossed polarizers; (b) porphyroclastic structure in xenolith MM15. Optical image, crossed polarizers; (c) vermicular crystals of Sp I and Cpx I forming a symplectite. Xenolith MM08, optical image, crossed polarizers; (d) “patch” filled with small crystals of Cpx II, OI II and amphibolite Af. Plagioclase may occur instead of Af. Xenolith MM29, BSE image; (e) “patch” filled with minerals as in (d) inside an exsolved core of Opx I. Xenolith MM31, BSE image; (i) crystals of Cpx II forming a vermicular rim around Opx I. Xenolith MM04, BSE image; (b) feldspar and opaques (Opq) vein rooted in basanite intruding into the xenolith. Xenolith MM04, BSE image.

Fig. 3. Modal composition of xenoliths. The groups are defined based on the Cpx I REE composition, see Section “5.2 Clinopyroxene trace elements”.

M. Matusiak-Malek et al. / Lithos 117 (2010) 49–60

53
Garnet symplectites originated close to the garnet-spinel boundary in the mantle, which was close to ca 1.55 GPa at 1000 °C.

7. Discussion

The history of mantle peridotites from Lutynia is recorded in the three generations of minerals. Orthopyroxene I and Cpx I grains contain abundant exsolutions lamellae of Cpx III, Opx III and Sp III. Clear rims and exsolved cores of host pyroxene grains have the same chemical composition (e.g. Fig. 5d–e) which indicates re-equilibration under spinel facies conditions and temperatures between 960 °C and 1000 °C. Pyroxene exsolutions indicate cooling of the peridotites as the miscibility gap between Cpx and Opx shrinks with decreasing temperature.

Clinopyroxene-spinel symplectites, like those from Lutynia, are often attributed to decomposition of garnet during re-equilibration of garnet peridotites in the Sp-stability field (e.g. Downes et al., 2003; Falus et al., 2007). The low degree of MREE(medium REE)/HREE fractionation in Cpx I that form symplectites (\((\text{Sm/Yb})_N = 0.29 - 3.17 \)), except in xenolith MM15: 5.76) indicates that it was formed at the expense of garnet in the Sp-stability field; indeed if Cpx I has crystallized in equilibrium with garnet, the HREE would be preferentially incorporated in garnet resulting in \((\text{Sm/Yb})_N > 5 \) (Bonadiman et al., 2008 and references therein).

Decomposition of garnet may be due to heating or decompression. The studied peridotites are chemically well equilibrated and pyroxene exsolution suggests equilibration after cooling. Therefore, we conclude that the garnet decomposition was related to decompression and possibly cooling.

7.1. Partial melting

Variation in mineral composition in the Lutynia peridotites suggests that they are residues after melt extraction. This process is expressed by the variable and high #mg and low Al content in garnet symplectites originated close to the garnet-spinel boundary in the mantle, which was close to ca 1.55 GPa at 1000 °C.

7. Discussion

The history of mantle peridotites from Lutynia is recorded in the three generations of minerals. Orthopyroxene I and Cpx I grains contain abundant exsolutions lamellae of Cpx III, Opx III and Sp III. Clear rims and exsolved cores of host pyroxene grains have the same chemical composition (e.g. Fig. 5d–e) which indicates re-equilibration under spinel facies conditions and temperatures between 960 °C and 1000 °C. Pyroxene exsolutions indicate cooling of the peridotites as the miscibility gap between Cpx and Opx shrinks with decreasing temperature.

Clinopyroxene-spinel symplectites, like those from Lutynia, are often attributed to decomposition of garnet during re-equilibration of garnet peridotites in the Sp-stability field (e.g. Downes et al., 2003; Falus et al., 2007). The low degree of MREE(medium REE)/HREE fractionation in Cpx I that form symplectites (\((\text{Sm/Yb})_N = 0.29 - 3.17 \)), except in xenolith MM15: 5.76) indicates that it was formed at the expense of garnet in the Sp-stability field; indeed if Cpx I has crystallized in equilibrium with garnet, the HREE would be preferentially incorporated in garnet resulting in \((\text{Sm/Yb})_N > 5 \) (Bonadiman et al., 2008 and references therein).

Decomposition of garnet may be due to heating or decompression. The studied peridotites are chemically well equilibrated and pyroxene exsolution suggests equilibration after cooling. Therefore, we conclude that the garnet decomposition was related to decompression and possibly cooling.

7.1. Partial melting

Variation in mineral composition in the Lutynia peridotites suggests that they are residues after melt extraction. This process is expressed by the variable and high #mg and low Al content in garnet symplectites originated close to the garnet-spinel boundary in the mantle, which was close to ca 1.55 GPa at 1000 °C.

7. Discussion

The history of mantle peridotites from Lutynia is recorded in the three generations of minerals. Orthopyroxene I and Cpx I grains contain abundant exsolutions lamellae of Cpx III, Opx III and Sp III. Clear rims and exsolved cores of host pyroxene grains have the same chemical composition (e.g. Fig. 5d–e) which indicates re-equilibration under spinel facies conditions and temperatures between 960 °C and 1000 °C. Pyroxene exsolutions indicate cooling of the peridotites as the miscibility gap between Cpx and Opx shrinks with decreasing temperature.

Clinopyroxene-spinel symplectites, like those from Lutynia, are often attributed to decomposition of garnet during re-equilibration of garnet peridotites in the Sp-stability field (e.g. Downes et al., 2003; Falus et al., 2007). The low degree of MREE(medium REE)/HREE fractionation in Cpx I that form symplectites (\((\text{Sm/Yb})_N = 0.29 - 3.17 \)), except in xenolith MM15: 5.76) indicates that it was formed at the expense of garnet in the Sp-stability field; indeed if Cpx I has crystallized in equilibrium with garnet, the HREE would be preferentially incorporated in garnet resulting in \((\text{Sm/Yb})_N > 5 \) (Bonadiman et al., 2008 and references therein).

Decomposition of garnet may be due to heating or decompression. The studied peridotites are chemically well equilibrated and pyroxene exsolution suggests equilibration after cooling. Therefore, we conclude that the garnet decomposition was related to decompression and possibly cooling.

7.1. Partial melting

Variation in mineral composition in the Lutynia peridotites suggests that they are residues after melt extraction. This process is expressed by the variable and high #mg and low Al content in garnet symplectites originated close to the garnet-spinel boundary in the mantle, which was close to ca 1.55 GPa at 1000 °C.

7. Discussion

The history of mantle peridotites from Lutynia is recorded in the three generations of minerals. Orthopyroxene I and Cpx I grains contain abundant exsolutions lamellae of Cpx III, Opx III and Sp III. Clear rims and exsolved cores of host pyroxene grains have the same chemical composition (e.g. Fig. 5d–e) which indicates re-equilibration under spinel facies conditions and temperatures between 960 °C and 1000 °C. Pyroxene exsolutions indicate cooling of the peridotites as the miscibility gap between Cpx and Opx shrinks with decreasing temperature.

Clinopyroxene-spinel symplectites, like those from Lutynia, are often attributed to decomposition of garnet during re-equilibration of garnet peridotites in the Sp-stability field (e.g. Downes et al., 2003; Falus et al., 2007). The low degree of MREE(medium REE)/HREE fractionation in Cpx I that form symplectites (\((\text{Sm/Yb})_N = 0.29 - 3.17 \)), except in xenolith MM15: 5.76) indicates that it was formed at the expense of garnet in the Sp-stability field; indeed if Cpx I has crystallized in equilibrium with garnet, the HREE would be preferentially incorporated in garnet resulting in \((\text{Sm/Yb})_N > 5 \) (Bonadiman et al., 2008 and references therein).

Decomposition of garnet may be due to heating or decompression. The studied peridotites are chemically well equilibrated and pyroxene exsolution suggests equilibration after cooling. Therefore, we conclude that the garnet decomposition was related to decompression and possibly cooling.

7.1. Partial melting

Variation in mineral composition in the Lutynia peridotites suggests that they are residues after melt extraction. This process is expressed by the variable and high #mg and low Al content in garnet symplectites originated close to the garnet-spinel boundary in the mantle, which was close to ca 1.55 GPa at 1000 °C.
pyroxenes, high Fo content in Ol I, the negative correlations of #mg vs. Al and Ti vs. Yb contents in Cpx I, and the negative #mg vs. #cr correlation in Sp I. Negative correlations between #cr and Yb and Lu also suggest that distribution of these elements in Cpx I was controlled by partial melting rather than by metasomatism (Ackerman et al., 2007).

As rare Amp grains occur in only one of the xenoliths and no phlogopite is present, Cpx I is the main host for REE. The partial melting degree may therefore be estimated based on the assumption that Cpx I controls the distribution coefficient for Lu and Yb in the residuum (Norman, 1998). We have calculated the amount of extracted melt using both batch and fractional melting models. For the starting bulk composition of the mantle (see Table 2), we have assumed the same values as Norman (1998; see Fig. 8). The modeling suggests that bath melting would require an unrealistically high degree of partial melting (Norman, 1998), whereas YbN/LuN ratios in Cpx I fit the fractional melting model very well, giving results ranging between 7 and 15% (Fig. 8). However, the calculated partial melting degree in xenolith MM30 is about 27%. This result is problematic as so high degree of melt extraction would remove clinopyroxene entirely from the rock. Thus we assume, that this result is an artifact and new Cpx may have crystallized in the rock because of metasomatism (see Section 7.3).

7.2. Metasomatism

Trace element composition of Cpx I (e.g. elevated REE content, Sr/Ce ratios lower and La/(La/Yb) ratios higher than in undepleted primitive mantle) reveals that the Lutynia peridotites were metasomatically enriched. Most of the xenoliths from Lutynia have been affected by cryptic metasomatism which is recorded only in the somatically enriched. Most of the xenoliths from Lutynia have been enriched by a carbonatitic melt. Carbonatite metasomatism is supported by the strong LREE-enrichment and high Th and U contents (e.g. Touron et al., 2008 and references therein) and moderate to strong negative anomalies in Ti and Zr in groups B and C. High Zr/Hf ratios also suggest a carbonatic affinity of the metasomatic agent (Dupuy et al., 1992). In the (Ti/Eu)/(Yb/Lu)N diagram by Coltorti et al. (1999), Cpx I from Lutynia group A and B xenoliths plot in carbonate field. On the other hand, the trace element composition of Cpx I does not display the other basic features assigned to carbonatite metasomatism, i.e. positive Sr anomaly and Ta–Ba contents above the primitive mantle level (e.g. Coltorti et al., 1999; Ionov et al., 2002). Moreover, Dantas et al. (2009) suggested that high Th and U contents as well as negative Ti anomalies may be an effect of “random percolation of (alkaline to sub-alkaline) melt within the mantle column’. Thus, a typical carbonatite metasomatic agent is not conclusively supported for the Lutynia mantle peridotites.

The incompatible trace element compositions of Cpx I from Lutynia are similar to those from the Ray Pic mantle xenoliths (French Massif Central; Zangana et al., 1997; 1999). Xenoliths from both occurrences (i.e. groups A, B and C from Lutynia and LREE-enriched protogranular, protogranular/porphyrplastic and porphyroplastic peridotites from Ray Pic) display similar REE patterns characterized by strong Th, U and LREE-enrichment. Zangana et al. (1997; 1999) proposed an alkaline fluid/melt as the metasomatic agent for peridotites from Ray Pic. By analogy, an alkaline fluid/melt is a possible metasomatic agent for Lutynia xenoliths.

To test this hypothesis we have calculated a melt in equilibrium with the clinopyroxene of group D xenoliths. We have used only this clinopyroxene, as its REE pattern displays a continuous enrichment in REE, which is a typical pattern for Cpx in equilibrium with an alkaline melt. It also does not record any significant melting processes. The REE patterns of other samples (groups A, B and C and xenolith MM30) show strong evidence for both melting (HREE) and enrichment (LREE) processes, thus they cannot be totally in equilibrium with any melt. We assume that the significant differences in REE patterns between groups result from their different distance from the source of the metasomatic agent (chromatographic effect as proposed below).

For computing the composition of a fluid in equilibrium with group D xenoliths, we have used Cpx/alkali basalt partition coefficients dataset given in Table 2. The theoretical melt in equilibrium with group D xenoliths is strongly LREE- and MREE-enriched, while HREE are flat (Fig. 9). Such a REE pattern is typical for an alkaline silicate melt. The carbonatite imprint recorded in Cpx I trace element composition (i.e. Ti and Zr anomalies, high Th/U contents, high Zr/Hf ratios), may result from different amounts of volatiles, most probably CO2, present in the alkaline silicate melt (as discussed by Ionov et al., 2002, Grégoire et al., 2009).

The REE patterns of Cpx I in groups A, B and C are similar to those of Cpx of mantle xenoliths from Spitsbergen (Ionov et al., 2002), Oman (Grégoire et al., 2009) and Cameroon (Teitchou, personal communication). These authors propose a two-stage evolution model to explain the geochemical features of mantle samples they investigated. First, an upper mantle domain experienced partial melting, which caused depletion in incompatible elements—especially LREE. Later, a metasomatic melt of alkaline affinity, more or less CO2-enriched, circulated within the previously depleted mantle resulting in its enrichment in incompatible elements. A similar two-stage model may be applied to the Lutynia mantle xenoliths investigated in our study.

Trace element composition of group D xenoliths, despite REE patterns differing significantly from the patterns of other groups, is in general similar to the trace element composition of groups A, B and C (Fig. 7b, d, f). Thus, we assume that all the investigated mantle xenoliths were metasomatised by a similar alkaline and probably CO2-bearing agent. According to the chromatographic metasomatism model of Ionov et al. (2002), the depleted mantle which is located closest to the magmatic source (vein, dyke) of the metasomatic agent is percolated by a relatively large volume of melt which enriches it all of the incompatible trace elements including the whole suite of REE. This may explain also the crystallization of purely metasomatic phases such as amphibole. Such a strongly enriched mantle is represented in
the present study by group D xenoliths (Fig. 7a). As the metasomatis-
ing agent percolates through the mantle further from the source, its
REE composition is continuously fractionated from the less incom-
patible (HREE) to the most incompatible (LREE) ones. Finally this
mechanism of metasomatism superimposed on LREE-depleted pat-
terns inherited from partial melting, may explain the variable shapes
of REE patterns observed in metasomatised mantle peridotites from
Lutynia: those relatively close to the “metasomatic source” are
enriched either in the less incompatible and the most incompatible
REEs (group A xenoliths), while in those located furthest from the
source, only the most incompatible REE (LREE and MREE) are
enriched (group B and C xenoliths, Fig. 7c–e).

7.3. Origin of variation in clinopyroxene chemical composition

Clinopyroxenes I from groups A, B (except for MM15 and MM29; see below) and C, display homogeneous chemical compositions within
a given group. The relationship between major element composition
and REE patterns of Cpx I suggests that its major element composition
might have been affected by cryptic metasomatism. Alternatively, the
slightly higher Na/Ca ratio in group C clinopyroxenes (Fig. 5e) suggests
that this group might have equilibrated at slightly higher pressures
than group A and B xenoliths (Köhler and Brey, 1990).

Clinopyroxenes I and III from xenolith MM15 are highly magnesian
(#mg = 0.93) and define a well separated group, enriched in Na
for "xenolith as LREE-enriched B group (Fig. 7c). This xenolith may re-

cresent rocks furthest from the source of metasomatism, which pre-

served the chemical composition of pre-metasomatic clinopyroxene,

and where only the trace element characteristic has been changed.

The major and trace element compositions of minerals in xenolith MM30 make this sample exceptional due to their extremely depleted nature (Figs. 5d–e, 7e–f, and 8). The Al contents in Opx I and Cpx I differ significantly from bordering grains (e.g. 0.008 vs. 0.01 a.pfu) but do not differ between the two groups (0.06–0.10 and 0.08–0.10 a.pfu, respectively). Thus we suggest that Opx I and Cpx I in xenolith MM30 are not in equilibrium and that Cpx represents a crystallized melt. This xenolith may constitute a part of strongly depleted mantle which was further affected by a metasomatic melt. The intruding agent was depleted (Cpx I records an extremely high degree of partial melting) and carried only selected elements such as Sr, Ti and Th (Fig. 7e, f).

7.4. Late enrichment processes

Patches occurring between grains of rock-forming minerals are known in many mantle xenoliths worldwide; however their origin is still unclear (Shaw, 1999). The most striking feature of minerals occurring in such patches, mostly Ol II and Cpx II, is the change in their Ca contents in respect to Ol I (780 ppm in Ol I, 1800 in Ol II) and Cpx I (0.84–0.92 a.pfu in Cpx I, 0.69–0.91 in Cpx II). Feldspar occurring in patches is texturally later than Cpx II, Ol II and Sp II (e.g. Fig. 2d), thus the crystallization of second generation of minerals was followed by feldspar crystallization. Feldspar compositions vary continuously from Pl to Af. The alkali feldspar and plagioclase occurring in the host basanite fall within the range defined by feldspar from patches (Fig. 6). Thus we suggest that the patches are a manifestation of an infiltration of a melt whose chemical composition was similar to that of the host basanite. Infiltration must have taken place before the

<table>
<thead>
<tr>
<th>Table 2 The experimental Cpx-alkali basalt partition coefficients. Data after Norman (1998).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>La</td>
</tr>
<tr>
<td>Ce</td>
</tr>
<tr>
<td>Nd</td>
</tr>
<tr>
<td>Sm</td>
</tr>
<tr>
<td>Eu</td>
</tr>
<tr>
<td>Gd</td>
</tr>
<tr>
<td>Dy</td>
</tr>
<tr>
<td>Ho</td>
</tr>
<tr>
<td>Er</td>
</tr>
<tr>
<td>Yb</td>
</tr>
<tr>
<td>Lu</td>
</tr>
</tbody>
</table>

Fig. 8. Batch and fractional melting models based on Yb and Lu contents in Cpx I (Norman, 1998) compared with data from the Cpx I from xenolith from Lutynia. (A) Fractional melting model; (B) batch melting model. Formulae for the two models are given. Abbreviation and values used in the formulas: \(C_{\text{Cpx}} \) — concentration of trace element in diopside; \(C_{\text{Cpx}}^0 \) — starting bulk composition in the source (see text); \(X_{\text{Cpx}} \) — fraction of diopside in the source (see text); \(D_{\text{Cpx}} \) — crystal/liquid distribution coefficient: 0.40 for Yb and 0.35 for Lu; \(f \) — degree of partial melting. Symbol “N” stands for “normalized to primitive mantle values” (McDonough and Sun, 1995).

Fig. 9. Primitive mantle-normalized (McDonough and Sun, 1995) REE pattern for liquid in equilibrium with Cpx I from group D xenoliths. The REE content for liquid in equilibrium with MM04 and Lu50 was computed with partition coefficients given in Table 2.
eruption since the melt had time to react with primary minerals, resulting in crystallization of the second generation of minerals (i.e. Ol II, Cpx II, and Sp II). The composition of Cpx II and Sp II can originate under mantle conditions. The continuous chemical variation of feldspar in patches suggests that it crystallized at supersolvus conditions, thus at depths where high temperatures persisted during crystallization.

7.5. The upper mantle beneath the north-eastern part of the Bohemian Massif

Lutynia is one of the easternmost Cenozoic volcanic occurrences in the CEVP. Its xenoliths offer an opportunity to get information about the lithospheric mantle beneath the NE part of the Bohemian Massif at a relatively recent time (ca. 5 Ma). Xenolith-bearing Cenozoic lava occurrences of similar age also occur at Kozákov in the Sudetes (Ackerman et al. 2007), located ca 150 km WNW from Lutynia, and ca. 50 km from the Eger Graben in western part of the Bohemian Massif.

Christensen et al. (2001) compared data from xenolith fabrics and geothermometry with SKS shear wave splitting and *Pn* anisotropy and proposed a three layer model for the mantle beneath Kozákov. According to this, the upper (32–43 km) and lower (<67 km) layers are formed of equigranular peridotites, whereas the middle layer (43–67 km) is formed of protogranular peridotites. Formation of the layers was probably linked to Variscan convergence of the mantle.

The majority of the Lutynia xenoliths display protogranular textures, and the Cpx I major element composition (Fig. 10), estimated fractional melting degree, and Cpx trace element contents are similar to those of some xenoliths from Kozákov. The less-depleted equigranular peridotites from Kozákov (those subjected to 4.2–9% partial melting) and groups A and B from Lutynia display similar REE shapes in Cpx, despite some differences in absolute content of trace elements, especially HREEs (Fig. 11a). The same is true for patterns of the Kozákov protogranular (6.7–13.2% of partial melting) and group C xenoliths (Fig. 11b). Xenoliths containing clinopyroxene displaying REE characteristics similar to those of the upper layer of equigranular mantle from Kozákov were not found in Lutynia.

Clinopyroxenes in peridotites from Lutynia and Kozákov have similar major and trace element compositions (Fig. 10). However, the ranges of temperatures (Brey and Köhler, 1990) recorded in peridotites from both occurrences differ significantly: the lower equigranular and

protagranular xenoliths from Kozákov record temperatures from 875 to 1116 °C while in the Lutynia xenoliths the temperatures vary in the narrow range 960–1000 °C. Clinopyroxene composition in both occurrences is similar, but the equilibration temperatures vary significantly. This results from different compositions of Opx especially Ca contents, which strongly affect the equilibration temperatures. Thus the Kozákov peridotites are petrographically different from those from Lutynia. However, the lava occurrence in Kozákov is much larger than that in Lutynia, and the discrepancies may result from different scales of mantle sampling.

8. Conclusions

The peridotite xenoliths at Lutynia represent the lithospheric mantle beneath the NE part of the Bohemian Massif at ca. 5 My. They equilibrated in a narrow temperature range of 960–1000 °C. Spinel–clinopyroxene symplectites and unmixing of ortho- and clinopyroxene suggest that their protoliths were garnet peridotites, that converted to spinel peridotites as temperatures and pressures decreased.

The Lutynia mantle underwent partial melting with melt extraction degrees mostly from 8 to 15%. The depleted peridotitic mantle was afterwards metasomatically refertilized. The peridotite supposedly closest to the metasomatic source contains minor amounts of pargasitic amphibole and its clinopyroxene REE content displays continuous enrichment from HREE to LREE. However, the metasomatism was almost entirely cryptic and is recorded only in the clinopyroxene

Fig. 10. *Al₂O₃/CaO* ratio in Cpx I from Lutynia compared to composition of Cpx from xenoliths from Kozákov (Czech Republic; Ackerman et al., 2007).

Fig. 11. Primitive mantle-normalized (McDonough and Sun, 1995) REE patterns in Cpx from Lutynia and Kozákov (Ackerman et al., 2007) (a) REE patterns of Lutynia groups A and B Cpx (grey field) and Kozákov lower equigranular xenoliths; (b) REE patterns of Lutynia group C Cpx (grey field) and Kozákov protogranular xenoliths.
trace elements. The REE contents in the clinopyroxenes vary among the xenoliths forming three main REE patterns, differing in LREE and HREE contents in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology 40, 133–165.

